make_training_dataset.Rmd
This vignette documents the workflow to create the training dataset which is extracted from the target dataset at selected labelled locations. Alternatively, if there is no need for a target dataset, for example, when prototype which spatial resolution to use for predictions, the workflow described for making the target dataset is wholly valid for creating a training dataset only.
Here we use the example of the South Fork Eel (SFE) river catchment (California, USA) and load the target streamlines for this region. Notice that using as.df = FALSE
, get_target_points()
now returns a SpatialPointsDataFrame
which is projected on latitude/longitude.
region <- "SFE" target_streamlines <- target_streamlines_SFE target_points <- get_target_points(target_streamlines, as.df = FALSE) #> Warning in proj4string(sldf): CRS object has comment, which is lost in output target_points #> class : SpatialPointsDataFrame #> features : 8022 #> extent : -124.0731, -123.4309, 39.60465, 40.37879 (xmin, xmax, ymin, ymax) #> crs : +proj=longlat +datum=WGS84 +no_defs #> variables : 59 #> names : COMID_FID, LENGTH, Rowid_, COMID_FI_1, COMID, AREA, SLOPE, CONFINEMEN, RUSLE, CONFINEM_1, RUSLEBINS, REGION, CSBIN, KMEANS_ID, RTLBIN, ... #> min values : 8283534_280, 0.886343917158, 0, 8283534_280, 8283534, 0.0036, 2.1034561e-08, 0, 0.148176916, Confined, High Sediment, North, CH, 1, North_CH_1, ... #> max values : 8290162_92, 200.000000006, 15660, 8290160_7, 8290162, 1785.0888, 1.57441710441, 994, 693.464281156, Unconfined, Low Sediment, North, UL, 5, North_UL_5, ...
SFE_all_data_df
is included in the package and contains the target data for the SFE region.
target_data_df <- SFE_all_data_df dim(target_data_df) #> [1] 8022 287
CatAreaSqKm | WsAreaSqKm | CHYD | CCHEM | CSED | CCONN | CTEMP | CHABT | ICI | WHYD | WCHEM | WSED | WCONN | WTEMP | WHABT | IWI | PctCarbResidCat | PctNonCarbResidCat | PctAlkIntruVolCat | PctSilicicCat | PctExtruVolCat | PctColluvSedCat | PctGlacTilClayCat | PctGlacTilLoamCat | PctGlacTilCrsCat | PctGlacLakeCrsCat | PctGlacLakeFineCat | PctHydricCat | PctEolCrsCat | PctEolFineCat | PctSalLakeCat | PctAlluvCoastCat | PctCoastCrsCat | PctWaterCat | PctCarbResidWs | PctNonCarbResidWs | PctAlkIntruVolWs | PctSilicicWs | PctExtruVolWs | PctColluvSedWs | PctGlacTilClayWs | PctGlacTilLoamWs | PctGlacTilCrsWs | PctGlacLakeCrsWs | PctGlacLakeFineWs | PctHydricWs | PctEolCrsWs | PctEolFineWs | PctSalLakeWs | PctAlluvCoastWs | PctCoastCrsWs | PctWaterWs | MineDensCat | MineDensWs | MineDensCatRp100 | MineDensWsRp100 | PctOw2011Cat | PctIce2011Cat | PctUrbOp2011Cat | PctUrbLo2011Cat | PctUrbMd2011Cat | PctUrbHi2011Cat | PctBl2011Cat | PctDecid2011Cat | PctConif2011Cat | PctMxFst2011Cat | PctShrb2011Cat | PctGrs2011Cat | PctHay2011Cat | PctCrop2011Cat | PctWdWet2011Cat | PctHbWet2011Cat | PctOw2011Ws | PctIce2011Ws | PctUrbOp2011Ws | PctUrbLo2011Ws | PctUrbMd2011Ws | PctUrbHi2011Ws | PctBl2011Ws | PctDecid2011Ws | PctConif2011Ws | PctMxFst2011Ws | PctShrb2011Ws | PctGrs2011Ws | PctHay2011Ws | PctCrop2011Ws | PctWdWet2011Ws | PctHbWet2011Ws | PctOw2011CatRp100 | PctIce2011CatRp100 | PctUrbOp2011CatRp100 | PctUrbLo2011CatRp100 | PctUrbMd2011CatRp100 | PctUrbHi2011CatRp100 | PctBl2011CatRp100 | PctDecid2011CatRp100 | PctConif2011CatRp100 | PctMxFst2011CatRp100 | PctShrb2011CatRp100 | PctGrs2011CatRp100 | PctHay2011CatRp100 | PctCrop2011CatRp100 | PctWdWet2011CatRp100 | PctHbWet2011CatRp100 | PctOw2011WsRp100 | PctIce2011WsRp100 | PctUrbOp2011WsRp100 | PctUrbLo2011WsRp100 | PctUrbMd2011WsRp100 | PctUrbHi2011WsRp100 | PctBl2011WsRp100 | PctDecid2011WsRp100 | PctConif2011WsRp100 | PctMxFst2011WsRp100 | PctShrb2011WsRp100 | PctGrs2011WsRp100 | PctHay2011WsRp100 | PctCrop2011WsRp100 | PctWdWet2011WsRp100 | PctHbWet2011WsRp100 | Precip8110Cat | Tmax8110Cat | Tmean8110Cat | Tmin8110Cat | Precip8110Ws | Tmax8110Ws | Tmean8110Ws | Tmin8110Ws | RunoffCat | RunoffWs | ClayCat | SandCat | ClayWs | SandWs | OmCat | PermCat | RckDepCat | WtDepCat | OmWs | PermWs | RckDepWs | WtDepWs | SLOPE | CONFINEMEN | RUSLE | SO | LDD | aspect_max.rstr | aspect_mean.rstr | aspect_median.rstr | aspect_min.rstr | aspect_sd.rstr | aspect_skew.rstr | curvplan_max.rstr | curvplan_mean.rstr | curvplan_median.rstr | curvplan_min.rstr | curvplan_sd.rstr | curvplan_skew.rstr | curvprof_max.rstr | curvprof_mean.rstr | curvprof_median.rstr | curvprof_min.rstr | curvprof_sd.rstr | curvprof_skew.rstr | flowdir_max.rstr | flowdir_mean.rstr | flowdir_median.rstr | flowdir_min.rstr | flowdir_sd.rstr | flowdir_skew.rstr | layer_max.rstr | layer_mean.rstr | layer_median.rstr | layer_min.rstr | layer_sd.rstr | layer_skew.rstr | roughness_max.rstr | roughness_mean.rstr | roughness_median.rstr | roughness_min.rstr | roughness_sd.rstr | roughness_skew.rstr | slope_max.rstr | slope_mean.rstr | slope_median.rstr | slope_min.rstr | slope_sd.rstr | slope_skew.rstr | tpi_max.rstr | tpi_mean.rstr | tpi_median.rstr | tpi_min.rstr | tpi_sd.rstr | tpi_skew.rstr | tri_max.rstr | tri_mean.rstr | tri_median.rstr | tri_min.rstr | tri_sd.rstr | tri_skew.rstr | aspect_max.nrch | aspect_mean.nrch | aspect_median.nrch | aspect_min.nrch | aspect_sd.nrch | aspect_skew.nrch | curvplan_max.nrch | curvplan_mean.nrch | curvplan_median.nrch | curvplan_min.nrch | curvplan_sd.nrch | curvplan_skew.nrch | curvprof_max.nrch | curvprof_mean.nrch | curvprof_median.nrch | curvprof_min.nrch | curvprof_sd.nrch | curvprof_skew.nrch | flowdir_max.nrch | flowdir_mean.nrch | flowdir_median.nrch | flowdir_min.nrch | flowdir_sd.nrch | flowdir_skew.nrch | layer_max.nrch | layer_mean.nrch | layer_median.nrch | layer_min.nrch | layer_sd.nrch | layer_skew.nrch | roughness_max.nrch | roughness_mean.nrch | roughness_median.nrch | roughness_min.nrch | roughness_sd.nrch | roughness_skew.nrch | slope_max.nrch | slope_mean.nrch | slope_median.nrch | slope_min.nrch | slope_sd.nrch | slope_skew.nrch | tpi_max.nrch | tpi_mean.nrch | tpi_median.nrch | tpi_min.nrch | tpi_sd.nrch | tpi_skew.nrch | tri_max.nrch | tri_mean.nrch | tri_median.nrch | tri_min.nrch | tri_sd.nrch | tri_skew.nrch | H.640 | H.960 | H.1280 | H.1600 | H.1920 | H.2240 | H.2560 | H.2880 | H.3200 | H.3840 | H.4480 | H.5120 | H.5760 | H.6400 | H.7680 | H.8960 | H.10240 | H.11520 | H.12800 | H.15360 | H.17920 | H.20480 | H.23040 | H.25600 | H.30720 | H.35840 | H.40960 | H.46080 | H.51200 | H.61440 | H.71680 | H.81920 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.586 | 5.681 | 0.950 | 0.954 | 0.955 | 0.957 | 0.942 | 0.945 | 0.738 | 0.963 | 0.960 | 0.962 | 0.969 | 0.958 | 0.952 | 0.786 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 87.025 | 0.000 | 8.302 | 0.000 | 0 | 0 | 3.657 | 1.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 87.025 | 0.000 | 8.302 | 0.000 | 0 | 0 | 3.657 | 1.016 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 63.636 | 0 | 36.364 | 0.000 | 0 | 0 | 0 | 0.000 | 0.000 | 0 | 0 | 0 | 0 | 0 | 29.630 | 0 | 33.333 | 0 | 28.889 | 8.148 | 0 | 0 | 0 | 0.000 | 1210.073 | 13.646 | 7.371 | 1.092 | 1210.073 | 13.646 | 7.371 | 1.092 | 293 | 293.000 | 13.877 | 56.248 | 13.877 | 56.248 | 0.714 | 10.486 | 125.433 | 182.880 | 0.714 | 10.486 | 125.433 | 182.880 | 0.060 | 14 | 5.806 | 1 | 0.553 | 6.282 | 2.531 | 3.426 | 0.001 | 2.096 | 0.124 | 0.040 | 0.000 | 0.000 | -0.047 | 0.006 | -0.812 | 0.036 | -0.001 | -0.001 | -0.046 | 0.008 | -0.764 | 128 | 9.464 | 16 | 1 | 10.094 | 3.627 | 794.441 | 710.960 | 705.982 | 648.451 | 31.922 | 0.448 | 18.264 | 9.234 | 9.455 | 1.076 | 3.321 | -0.133 | 0.764 | 0.384 | 0.389 | 0.026 | 0.133 | -0.249 | 2.626 | -0.068 | -0.024 | -1.847 | 0.447 | -0.085 | 6.010 | 2.869 | 2.896 | 0.255 | 1.069 | -0.032 | 6.270 | 1.566 | 0.346 | 0.013 | 2.202 | 1.165 | 0.003 | -0.003 | 0.000 | -0.036 | 0.009 | -2.255 | 0.000 | -0.014 | -0.012 | -0.037 | 0.011 | -0.731 | 32 | 6.067 | 1 | 1 | 9.288 | 1.577 | 682.511 | 673.280 | 671.432 | 668.006 | 3.962 | 0.739 | 11.544 | 5.276 | 4.775 | 2.553 | 2.016 | 1.057 | 0.441 | 0.199 | 0.185 | 0.060 | 0.088 | 0.707 | 0.033 | -0.685 | -0.562 | -1.846 | 0.568 | -0.558 | 3.318 | 1.663 | 1.636 | 0.899 | 0.573 | 0.948 | 0.910 | 0.962 | 0.918 | 0.894 | 0.839 | 0.852 | 0.839 | 0.816 | 0.806 | 0.743 | 0.695 | 0.707 | 0.768 | 0.712 | 0.680 | 0.637 | 0.597 | 0.578 | 0.611 | 0.527 | 0.524 | 0.481 | 0.487 | 0.395 | 0.443 | 0.362 | 0.454 | 0.398 | 0.449 | 0.404 | 0.368 | 0.366 |
2.855 | 4.098 | 1.000 | 0.986 | 0.994 | 1.000 | 1.000 | 0.994 | 0.974 | 0.995 | 0.983 | 0.991 | 0.996 | 0.995 | 0.991 | 0.953 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0.820 | 0 | 0.000 | 0.000 | 0 | 0 | 41.803 | 0 | 9.016 | 0.000 | 28.689 | 19.672 | 0 | 0 | 0.000 | 0.000 | 0.816 | 0.000 | 0.000 | 0.000 | 0 | 0 | 75.184 | 0 | 2.204 | 0.000 | 12.000 | 9.796 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 90.390 | 0 | 8.312 | 1.299 | 0 | 0 | 0 | 0.000 | 1.791 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 87.910 | 0 | 8.806 | 1.493 | 0 | 0 | 0 | 0.000 | 710.003 | 7.348 | 1.348 | -4.660 | 742.730 | 6.808 | 0.896 | -5.018 | 293 | 293.000 | 5.710 | 69.130 | 5.710 | 69.130 | 1.450 | 23.220 | 152.400 | 163.830 | 1.450 | 23.220 | 152.400 | 163.830 | 0.041 | 0 | 52.215 | 1 | 0.802 | 6.277 | 2.765 | 2.109 | 0.000 | 1.855 | 0.171 | 0.042 | 0.001 | 0.002 | -0.063 | 0.009 | -1.089 | 0.057 | -0.002 | 0.000 | -0.068 | 0.013 | -1.126 | 128 | 10.273 | 16 | 1 | 14.654 | 4.839 | 248.074 | 177.737 | 175.381 | 120.033 | 30.005 | 0.263 | 32.795 | 11.026 | 9.515 | 0.692 | 6.060 | 1.200 | 1.333 | 0.483 | 0.419 | 0.007 | 0.269 | 1.002 | 2.672 | -0.010 | 0.067 | -3.748 | 0.716 | -0.754 | 8.824 | 3.261 | 2.848 | 0.225 | 1.706 | 1.012 | 6.116 | 3.262 | 4.527 | 0.212 | 2.066 | -0.435 | 0.010 | -0.010 | -0.004 | -0.054 | 0.016 | -1.461 | -0.002 | -0.027 | -0.020 | -0.068 | 0.017 | -0.589 | 64 | 25.259 | 16 | 1 | 20.538 | 0.996 | 139.348 | 134.755 | 134.129 | 130.633 | 3.001 | 0.232 | 8.451 | 4.609 | 4.017 | 2.040 | 1.824 | 0.538 | 0.419 | 0.166 | 0.149 | 0.024 | 0.113 | 0.765 | -0.285 | -0.932 | -0.752 | -1.972 | 0.464 | -0.583 | 2.513 | 1.371 | 1.287 | 0.460 | 0.578 | 0.332 | 0.858 | 0.792 | 0.706 | 0.793 | 0.695 | 0.644 | 0.772 | 0.753 | 0.674 | 0.653 | 0.656 | 0.640 | 0.709 | 0.589 | 0.650 | 0.692 | 0.504 | 0.613 | 0.560 | 0.601 | 0.537 | 0.459 | 0.416 | 0.508 | 0.390 | 0.485 | 0.394 | 0.385 | 0.449 | 0.368 | 0.368 | 0.474 |
3.994 | 4.843 | 0.994 | 0.981 | 0.990 | 0.996 | 0.995 | 0.993 | 0.949 | 0.993 | 0.980 | 0.986 | 0.993 | 0.991 | 0.987 | 0.932 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 6.091 | 0 | 0.000 | 0.000 | 0 | 0 | 75.127 | 0 | 0.000 | 0.000 | 13.706 | 5.076 | 0 | 0 | 0.000 | 0.000 | 0.711 | 1.665 | 0.000 | 0.000 | 0 | 0 | 83.764 | 0 | 0.000 | 0.000 | 3.629 | 10.232 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 0 | 0 | 2.899 | 0 | 0.000 | 0 | 66.667 | 30.435 | 0 | 0 | 0 | 0.000 | 0.000 | 0 | 0 | 0 | 0 | 0 | 35.836 | 0 | 0.000 | 0 | 31.367 | 32.797 | 0 | 0 | 0 | 0.000 | 834.400 | 6.771 | 1.236 | -4.305 | 927.973 | 5.398 | -0.443 | -6.283 | 293 | 304.963 | 5.710 | 69.130 | 5.710 | 69.130 | 1.450 | 23.220 | 152.400 | 163.830 | 1.450 | 23.220 | 152.400 | 163.830 | 0.291 | 0 | 308.980 | 1 | 0.663 | 5.895 | 3.613 | 3.727 | 1.478 | 1.234 | 0.059 | 0.044 | 0.000 | 0.002 | -0.081 | 0.014 | -1.764 | 0.023 | -0.001 | 0.000 | -0.073 | 0.009 | -2.209 | 16 | 9.325 | 16 | 1 | 7.366 | -0.212 | 455.246 | 349.543 | 352.887 | 249.622 | 44.744 | -0.162 | 27.273 | 13.526 | 13.358 | 2.836 | 4.193 | 0.315 | 1.146 | 0.595 | 0.598 | 0.064 | 0.194 | -0.020 | 3.093 | -0.039 | 0.086 | -4.022 | 0.794 | -1.289 | 8.454 | 4.047 | 3.982 | 0.974 | 1.242 | 0.283 | 4.652 | 3.545 | 3.625 | 2.564 | 0.550 | 0.213 | -0.007 | -0.036 | -0.034 | -0.065 | 0.020 | -0.040 | 0.007 | -0.008 | -0.005 | -0.048 | 0.011 | -1.616 | 16 | 8.464 | 8 | 1 | 5.809 | 0.225 | 327.129 | 296.531 | 295.940 | 268.134 | 18.875 | 0.044 | 15.034 | 9.594 | 8.873 | 4.949 | 2.626 | 0.426 | 0.610 | 0.360 | 0.326 | 0.185 | 0.113 | 0.681 | -0.113 | -1.309 | -1.120 | -3.021 | 0.670 | -0.840 | 4.886 | 3.090 | 3.088 | 1.826 | 0.860 | 0.470 | 0.922 | 0.877 | 0.843 | 0.814 | 0.866 | 0.835 | 0.815 | 0.793 | 0.786 | 0.787 | 0.764 | 0.700 | 0.706 | 0.724 | 0.633 | 0.677 | 0.631 | 0.617 | 0.620 | 0.584 | 0.553 | 0.616 | 0.497 | 0.545 | 0.390 | 0.485 | 0.472 | 0.385 | 0.366 | 0.368 | 0.368 | 0.366 |
3.856 | 746.815 | 0.997 | 0.978 | 0.978 | 0.993 | 0.990 | 0.965 | 0.904 | 0.984 | 0.971 | 0.976 | 0.975 | 0.970 | 0.969 | 0.855 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 0.000 | 0.000 | 100.000 | 0.000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.000 | 0 | 0.000 | 0.000 | 100.000 | 0.000 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 31.642 | 0 | 62.164 | 4.925 | 0 | 0 | 0 | 1.269 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 31.642 | 0 | 62.164 | 4.925 | 0 | 0 | 0 | 1.269 | 280.990 | 20.029 | 13.628 | 7.228 | 280.990 | 20.029 | 13.628 | 7.228 | 106 | 106.000 | 4.960 | 76.570 | 4.960 | 76.570 | 0.240 | 43.470 | 85.440 | 182.880 | 0.240 | 43.470 | 85.440 | 182.880 | 0.001 | 42 | 289.641 | 5 | 0.873 | 5.905 | 2.734 | 1.629 | 0.747 | 1.553 | 0.192 | 0.013 | 0.000 | 0.000 | -0.023 | 0.003 | -2.323 | 0.044 | -0.002 | -0.002 | -0.044 | 0.008 | 0.211 | 64 | 7.998 | 1 | 1 | 8.477 | 1.446 | 277.513 | 200.941 | 195.291 | 163.743 | 31.948 | 0.468 | 26.282 | 9.189 | 10.201 | 0.311 | 5.143 | -0.249 | 1.234 | 0.461 | 0.507 | 0.000 | 0.271 | -0.026 | 1.870 | -0.048 | -0.055 | -1.838 | 0.352 | -0.043 | 7.967 | 2.904 | 3.225 | 0.129 | 1.681 | -0.091 | 1.779 | 1.389 | 1.355 | 1.149 | 0.177 | 0.474 | 0.002 | 0.000 | 0.000 | -0.003 | 0.001 | -0.169 | 0.002 | -0.005 | -0.007 | -0.008 | 0.004 | 0.938 | 2 | 1.042 | 1 | 1 | 0.204 | 4.304 | 165.333 | 164.504 | 164.495 | 163.915 | 0.401 | 0.265 | 3.588 | 1.680 | 1.530 | 0.542 | 0.929 | 0.427 | 0.155 | 0.081 | 0.074 | 0.030 | 0.040 | 0.311 | 0.147 | -0.124 | -0.148 | -0.308 | 0.114 | 0.562 | 1.012 | 0.521 | 0.476 | 0.195 | 0.256 | 0.316 | 0.919 | 0.925 | 0.835 | 0.768 | 0.880 | 0.795 | 0.790 | 0.776 | 0.755 | 0.734 | 0.688 | 0.711 | 0.640 | 0.535 | 0.435 | 0.493 | 0.498 | 0.551 | 0.465 | 0.470 | 0.367 | 0.334 | 0.417 | 0.395 | 0.466 | 0.362 | 0.394 | 0.513 | 0.449 | 0.404 | 0.368 | 0.474 |
4.895 | 4.895 | 1.000 | 0.977 | 0.988 | 0.991 | 0.988 | 0.984 | 0.931 | 1.000 | 0.977 | 0.986 | 0.990 | 0.988 | 0.981 | 0.926 | 0 | 0 | 0 | 98.517 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.483 | 0 | 0 | 0 | 98.517 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.483 | 0 | 0 | 0 | 0 | 0.000 | 0 | 3.377 | 1.188 | 0 | 0 | 0.000 | 0 | 6.361 | 3.404 | 71.235 | 14.168 | 0 | 0 | 0.000 | 0.268 | 0.000 | 0.000 | 3.377 | 1.188 | 0 | 0 | 0.000 | 0 | 6.361 | 3.404 | 71.235 | 14.168 | 0 | 0 | 0.000 | 0.268 | 0.000 | 0 | 0 | 0 | 0 | 0 | 1.711 | 0 | 22.368 | 0 | 46.184 | 25.789 | 0 | 0 | 0 | 3.947 | 0.000 | 0 | 0 | 0 | 0 | 0 | 1.711 | 0 | 22.368 | 0 | 46.184 | 25.789 | 0 | 0 | 0 | 3.947 | 417.362 | 20.607 | 13.517 | 6.421 | 417.362 | 20.607 | 13.517 | 6.421 | 293 | 293.000 | 14.204 | 56.572 | 14.204 | 56.572 | 0.626 | 7.282 | 86.530 | 181.455 | 0.626 | 7.282 | 86.530 | 181.455 | 0.102 | 9 | 6.452 | 1 | 0.623 | 6.282 | 3.501 | 3.964 | 0.001 | 2.163 | -0.447 | 0.033 | 0.000 | 0.000 | -0.060 | 0.008 | -1.670 | 0.036 | -0.001 | 0.000 | -0.051 | 0.010 | -0.978 | 128 | 12.922 | 16 | 1 | 11.387 | 4.437 | 428.525 | 378.313 | 378.780 | 330.742 | 21.190 | 0.048 | 17.571 | 6.649 | 6.103 | 1.645 | 2.655 | 1.065 | 0.707 | 0.279 | 0.259 | 0.008 | 0.112 | 0.905 | 2.459 | -0.051 | 0.005 | -3.086 | 0.555 | -1.015 | 5.462 | 2.096 | 1.922 | 0.414 | 0.829 | 0.977 | 6.212 | 2.358 | 0.811 | 0.121 | 2.246 | 0.401 | 0.005 | -0.011 | -0.004 | -0.060 | 0.016 | -1.368 | 0.010 | -0.018 | -0.021 | -0.033 | 0.012 | 0.955 | 64 | 15.938 | 16 | 1 | 15.020 | 0.972 | 358.031 | 348.184 | 350.932 | 340.357 | 5.211 | -0.210 | 10.845 | 5.691 | 5.260 | 1.702 | 2.350 | 0.485 | 0.469 | 0.191 | 0.193 | 0.016 | 0.119 | 0.529 | -0.069 | -0.974 | -0.907 | -2.902 | 0.683 | -1.210 | 4.109 | 1.669 | 1.581 | 0.414 | 0.892 | 0.842 | 0.847 | 0.917 | 0.865 | 0.828 | 0.839 | 0.799 | 0.754 | 0.752 | 0.767 | 0.762 | 0.713 | 0.713 | 0.636 | 0.657 | 0.591 | 0.573 | 0.580 | 0.649 | 0.600 | 0.546 | 0.538 | 0.500 | 0.448 | 0.468 | 0.581 | 0.438 | 0.397 | 0.385 | 0.366 | 0.464 | 0.812 | 0.474 |
0.860 | 18.095 | 0.988 | 0.972 | 0.978 | 0.986 | 0.981 | 0.974 | 0.884 | 0.998 | 0.980 | 0.988 | 0.986 | 0.983 | 0.982 | 0.919 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0.000 | 0.000 | 0 | 0 | 24.715 | 0 | 28.517 | 0.000 | 46.008 | 0.760 | 0 | 0 | 0.000 | 0.000 | 0.659 | 0.088 | 0.000 | 0.000 | 0 | 0 | 77.920 | 0 | 2.512 | 0.000 | 11.739 | 7.082 | 0 | 0 | 0.000 | 0.000 | 14.062 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 10.938 | 0 | 53.125 | 21.875 | 0 | 0 | 0 | 0.000 | 14.062 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 10.938 | 0 | 53.125 | 21.875 | 0 | 0 | 0 | 0.000 | 671.741 | 9.725 | 3.010 | -3.713 | 943.536 | 6.541 | 0.480 | -5.583 | 293 | 293.000 | 5.710 | 69.130 | 5.710 | 69.130 | 1.450 | 23.220 | 152.400 | 163.830 | 1.450 | 23.220 | 152.400 | 163.830 | 0.015 | 148 | 4.515 | 2 | 0.864 | 6.278 | 3.713 | 4.567 | 0.004 | 1.778 | -0.309 | 0.024 | 0.001 | 0.000 | -0.024 | 0.005 | 0.032 | 0.032 | -0.002 | 0.000 | -0.046 | 0.008 | -1.426 | 128 | 11.021 | 16 | 1 | 13.912 | 4.940 | 254.109 | 186.173 | 180.822 | 169.393 | 17.459 | 1.544 | 18.335 | 4.515 | 3.628 | 0.155 | 3.231 | 1.072 | 0.790 | 0.200 | 0.158 | 0.001 | 0.148 | 1.107 | 2.067 | -0.027 | -0.012 | -2.588 | 0.387 | -0.757 | 5.383 | 1.364 | 1.088 | 0.024 | 0.983 | 1.067 | 5.489 | 4.736 | 4.846 | 4.023 | 0.427 | -0.193 | 0.014 | 0.002 | 0.003 | -0.015 | 0.006 | -0.635 | 0.006 | -0.016 | -0.011 | -0.046 | 0.018 | -0.486 | 16 | 15.520 | 16 | 4 | 2.400 | -4.416 | 176.251 | 171.978 | 171.122 | 170.226 | 1.647 | 1.140 | 13.452 | 5.784 | 6.345 | 0.770 | 4.373 | 0.339 | 0.697 | 0.254 | 0.216 | 0.030 | 0.204 | 0.507 | 0.192 | -0.530 | -0.161 | -2.588 | 0.836 | -1.269 | 4.591 | 1.629 | 1.462 | 0.223 | 1.306 | 0.569 | 0.727 | 0.889 | 0.848 | 0.751 | 0.749 | 0.717 | 0.705 | 0.666 | 0.799 | 0.749 | 0.628 | 0.606 | 0.601 | 0.608 | 0.537 | 0.461 | 0.421 | 0.394 | 0.577 | 0.458 | 0.388 | 0.459 | 0.535 | 0.377 | 0.390 | 0.438 | 0.394 | 0.385 | 0.449 | 0.368 | 0.812 | 0.474 |
We now use get_input_data()
to load and sort an input .csv
file and convert the information herein as a SpatialPoints
object with get_points_from_input_data()
.
input_dir <- system.file("extdata/input_data", package = "RiverML") fname <- paste0(region,"_input.csv") input_data <- get_input_data(file.path(input_dir, fname)) head(input_data) #> Name ward.grp long lat year #> 1 3 5 -123.6740 39.68902 2017 #> 2 10 4 -123.5543 39.80925 2017 #> 3 17 6 -123.5150 39.73622 2017 #> 4 18 4 -124.0260 40.33604 2017 #> 5 24 4 -123.6221 39.64763 2017 #> 6 25 4 -123.8076 40.13879 2017 labelled_points <- get_points_from_input_data(input_data) labelled_points #> class : SpatialPoints #> features : 96 #> extent : -124.0401, -123.4844, 39.64582, 40.36147 (xmin, xmax, ymin, ymax) #> crs : +proj=longlat +datum=WGS84 +no_defs
Using snap_points_to_points()
we extract the indices of target_points
corresponding to the minimum distances between the labelled_points
and the target_points
.
snap <- snap_points_to_points(labelled_points, target_points) length(snap) #> [1] 96 head(snap) #> [1] 6292 2887 3779 1792 7514 3769
From the snap
indices, we can easily retrieve the training data, the corresponding groups
and save.
training_data_df <- target_data_df[snap, ] groups <- input_data$ward.grp # write.csv(training_data_df, # saving # file = file.path(out_dir, paste0(region,'_data_df.csv')), # row.names = FALSE) # write.csv(groups, # saving # file = file.path(out_dir, paste0(region,'_groups.csv')), # row.names = FALSE)