Getting target data

Geospatial data

get_input_data()

Loading input data

get_input_polygons()

Get the polygons for a set of locations defined by input_data and n

get_points_from_input_data()

Get the SpatialPoint from input data

get_pol()

Get a SpatialPolygons around a point

get_target_points()

Extracts mid-points from streamlines

get_target_streamlines()

Load a SpatialLinesDataFrame containing values for valley confinement, GIS slope and RUSLE. The SpatialDataFrame source data is the NHDv2Plus dataset which is segmented into 200-m stream intervals.

snap_points_to_points()

Snaps points to points

Terrain analysis

get_stats_df()

Wrapper function to calculate terrain analysis statistics for a RasterStack

get_terrain_metrics()

Get the terrain analysis metrics

near_channel_stats()

Derive near-channel statistics: "median","mean", "min", "max", "sd", "skew"

raster_stats()

Derive raster statistics: "median","mean", "min", "max", "sd", "skew"

terrain_()

Modified terrain() function

Statistical roughness

get_H_rasters()

Retrieve rasters of statistical roughness of topography

join_streamlines_with_H_rasters()

Extract the values of all H_rasters along streamlines

StreamCat

drops_streamcat_df()

Remove some variables from streamcat_df

get_streamcat_df()

Get the StreamCat data

get_target_streamcat_df()

Matches streamcat_df and target_streamlines using COMID

Machine learning

Data loading

fmt_labels()

Format the class labels

get_coords()

Retrieve the coordinates of the observations

get_target_data()

Load target features

get_training_data()

Load training features

make_training_data()

Transform training data from list to data.frame

sanitize_data()

Ensures that non-finite values are flagged as NA

Data transformation

get_ppc()

Get the preprocessing

get_smote_coords()

Produces noisy coordinates for SMOTE data

get_smote_data()

Resolve the class imbalance using the SMOTE algorithm

preproc_data()

Process the data according to a preProcess object

resolve_class_imbalance()

Resolve class imbalances using UBL package

Constructing learners

get_final_learners()

Get the final learners from the benchmark tuning results

get_learners()

Get the learners

get_learners_internal()

Internal function to get the learners

get_ps()

Get the values for the hyper-parameter(s) set

Benchmark

compute_benchmark()

Computes the benchmark in parallel mode

compute_final_model()

Compute the final models in sequential mode

get_bestBMR_tuning_results()

Retrieve the value of the benchmark tuning results

get_inner()

Get the inner folds for the nested resampling

get_outers()

Get the outer folds for the nested resampling

regional_benchmark()

Wrapper function to compute the benchmark

savePARAMETERS()

Saves the benchmark parameters

Benchmark post-processing

fixVarNames()

Fixes variable names for data visualization purpose

getAllBMRS()

Get all the benchmark result in a directory of directories

getBMRTuningEntropy()

Compute the tuning entropy

getBMR_perf_tune()

Selecting elements from BMR_res and cosmetic changes

getBestBMRTune()

Get the tuning results of the optimal models

getBestBMRTuningEntropy()

Get the tuning entropy corresponding to the optimal models

getFreqBestFeatureSets()

Get the frequency of selection of a given feature across all regions

getHyperparNames()

Get hyper-parameters names

getTunePlot()

Plot the distribution of hyper-parameters resulting from the nested resampling

get_BMR()

Retrieve benchmark results

get_bestFeatureSets()

Get the optinmal feature sets

makeAllFeatureImportancePlotFS()

Create feature importance across all regions of study

makeAverageAUCPlot()

Make average AUC plot

makeAverageAccPlot()

Make average accuracy plot

makeBestTuneAUCPlot()

Make a violin plot comparing the results from the optimal models

makeExampleModelSelectionPlot()

Make an example plot of model selection

makeFeatureImportancePlot()

Makes a dot chart of feature importance

makeTotalTimetrainPlot()

Make training time plot

makeTuningEntropyPlot()

Create a plot of the evolution of tuning entropy with the number of selected features

makeWindowInfluencePlot()

Visualize the influence of window size on model selection

normH()

Calculates entropy

Predictions

calibrated_predictions()

Calibrate machine learning predictions

compute_predictions()

Retrieve the final (optimal) models

get_calibrations()

Performs a posterior multinomial calibration of machine learning predictions

get_entropy_df()

Formats entropy rate results

get_final_models()

Retrieve the final (optimal) models

get_predictions()

Get predictions

richness()

Calculate the richness (number of different species)

shannon_weiner()

Calculates Shannon-Weiner entropy

simpson_evenness()

Calculate Simpson's evenness

Datasets

BMR_res

Benchmark results

CA_geology

Geological map of California

SFE_all_data_df

Target data for SFE region

regional_characteristics

Regional characteristics

target_streamlines_K

Target streamlines for the K region

target_streamlines_NC

Target streamlines for the NC region

target_streamlines_NCC

Target streamlines for the NCC region

target_streamlines_SAC

Target streamlines for the SAC region

target_streamlines_SC

Target streamlines for the SC region

target_streamlines_SCC

Target streamlines for the SCC region

target_streamlines_SECA

Target streamlines for the SECA region

target_streamlines_SFE

Target streamlines for the SFE region

target_streamlines_SJT

Target streamlines for the SJT region

Misc

HPC_optim()

Computes an optimized repartition of the HPC computing